
Team collaboration 
with Test-First Approach

Etienne Pierrot
Senior Software Engineer

Zlata Shtamburg
Senior Software Engineer In Test





PRIVATE & CONFIDENTIAL



Goals

1. Quick Feedback loop

2. Share QA mindset with overall team

3. Microservices testing



Feedback loop



Feedback is the fuel of the development 
process





Feedback duration:
almost instant 



Feedback duration:
few seconds



Feedback duration:
few seconds/minutes



Feedback duration:
hour(s)



Feedback duration:
minutes - hour(s)



Feedback duration:
minutes - weeks



Feedback duration:
hours - month



Feedback duration:
days - years



Summary
IDE Syntax lighting almost instant 

Compilation seconds/minutes

Unit tests seconds/minutes

Peer review hour(s)

Continuous integration minutes - hour(s)

QA validation minutes - weeks

Production logs and metrics hours - month

Consumers feedback days - years



Summary
IDE Syntax lighting almost instant 

Compilation seconds/minutes

Unit tests seconds/minutes

Peer review hour(s)

Continuous integration minutes - hour(s)

QA validation minutes - weeks

Production logs and metrics hours - month

Consumers feedback days - years

N
o 

Q
A 

fe
ed

ba
ck



Test First approach



The TDD loop



TDD

● Push developer to thinking more about the problem to solve before jumping 

to implementation

● Produce minimalistic solution focus on the problem to solve

● Progress with baby step 

● Allow developer to have confident about refactoring and improving design



But TDD alone doesn’t ensure a shared 
understanding of the feature 



What is Acceptance tests

Given Pier has a 10 EUR
When Pier buy a chocolate bar for 2 EUR
Then Pier has a chocolate bar
And Pier has a 8 EUR



Acceptance TDD



@tpierrain

http://tpierrain.blogspot.com/2021/03/outside-in-diamond-tdd-1-style-made.html

To know more about that :



Lifecycle of a feature



Devops

Goal: Ability to run the platform on local environment

Potential problems:

1. Different OS used in the team
2. Heavy application / a lot of services

Solution:



End to end testing and Microservices

          

          

          

          

https://www.twitter.com/samnewman/status/1357642975271124992



Microservices pros/cons



Microservices pros/cons



What is a good amount of microservices?



Domain Driven Design to the rescue



Bounded context

Eric Evans définition:

A BOUNDED CONTEXT delimits the applicability of a particular model so that team members have a clear 
and shared understanding of what has to be consistent and how it relates to other CONTEXTS. Within that 
CONTEXT, work to keep the model logically unified, but do not worry about applicability outside those 
bounds. In other CONTEXTS, other models apply, with differences in terminology, in concepts and rules, and 
in dialects of the UBIQUITOUS LANGUAGE. By drawing an explicit boundary, you can keep the model pure, 
and therefore potent, where it is applicable. At the same time, you avoid confusion when shifting your 
attention to other CONTEXTS. Integration across the boundaries necessarily will involve some translation, 
which you can analyze explicitly.



Bounded context quickly

● Prefer to deal with multiple models rather than one huge model

● Each bounded context has his own ubiquitous language

● In general, bounded context match with sub domains

● Should be driven by the communication structure of the organization (cf 

Conway’s law)

● The boundary are implemented with a set of explicit public contracts

● This boundary is not necessarily a network boundary. The boundary can 

be inside a monolith 



Bounded context

https://martinfowler.com/bliki/BoundedContext.html



Discovering your domain boundaries 



Acceptance test Example

Given single use card is created
When transaction is approved
Then card is revoked



To conclude about microservices

● Microservices can be interesting for socio-technical purpose
● Boundaries / contracts of your microservices / bounded context should be 

clearly defined
● Prefer rely on Acceptance Test at Bounded Context level rather than E2E 

testing



Conclusion

- This practices (AT and Bounded Context) help us to have to reduce the 
feedback between dev and qa

- Boundaries between QA and Developers are more or more blurry
- In our situation, QA validation isn’t anymore the main limitation to release very 

frequently
- Beware to split too early your system into many microservices 
- Feature validation at very early stage improve our ability to release more 

frequently
- Feedback loop - good KPI to measure



Q/A


